UCN-CEAZA
The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest”
Vásquez, J., Piaget, N., & Vega, J.
In Chile, management of natural resources usually starts right before its imminent collapse or after evident declination. In the northern area of the country, the fishery of brown seaweeds has an enormous social, ecological, and economical importance. More than 11,000 people depend directly or indirectly on the collection and harvesting of this resource. Ecologically, kelps constitute areas for food, reproduction, and refuge for hundreds of invertebrates and fish species. Economically, landings up to 300,000 dry tons per year represent close to US $60 million for the industry. Until 2002, the Chilean brown seaweed fishery was mainly sustained by natural mortality, where plants cast ashore were collected by artisanal fishermen. Since then, three brown seaweed species of economic importance (Lessonia nigrescens, Lessonia trabeculata, and Macrocystis pyrifera) have been intensively harvested in coastal areas between 18° and 32° S. To manage kelp populations along the northern Chilean coast, regulations have been based on the principle “how you harvest is more important than how much you harvest”. This exploitation strategy has been adopted in consensus between fishermen, industries, governmental entities, and scientists. Since L. nigrescens represents more than 70% of total brown seaweed landings, this study tests the effects of L. nigrescens harvesting on the following population variables: (1) abundance, (2) distribution, (3) juvenile recruitment, (4) plant morphology, (5) frequency of reproductive plants, and (6) biodiversity of the macroinvertebrate community associated to kelp holdfasts. Our results show that, despite the enormous harvesting pressure on Lessonia density and biomass, the associated macroinvertebrate richness has been maintained, due to normal plant growth and high recruitment all year round.
Año: 2012
Palabras claves: Kelp fishery, Natural populations, Intertidal, Management, Harvesting, Conservation, Administrative policies.
Referencia APA: Vásquez, J., Piaget, N., & Vega, J. (2012). The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest". J Appl Phycol, 24(3), 417-426.
Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2011-30 September 2011.
A’hara, S. W., Amouroux, P., Argo, E. E., Avand-Faghih, A., Barat, A., Barbieri, L., Bert, T. M., Blatrix, R., Blin, A., Bouktila, D., Broome, A., Burban, C., Capdevielle-Dulac, C., Casse, N., Chandra, S., Cho, K. J., Cottrell, J. E., Crawford, C. R., Davis, M. C., Delatte, H., Desneux, N., Djieto-lordon, C., Dubois, M. P., El-Mergawy, R. A. A. M., Gallardo-Escárate, C., Garcia, M., Gardiner, M.M., Guillemaud, T., Haye, P. A., Hellemans, B., Hinrichsen, P., Jeon, J. H., Kerdelhué, C., Kharrat, I., Kim, K. H., Kim, Y. Y., Kwan, Y.-S., Labbe, E. M., Lahood, E., Lee, K. M., Lee, W.-O., Lee, Y.-H., Legoff, I., Li, H., Lin, C.-P., Liu, S. S., Liu, Y. G., Long, D., Maes, G. E., Magnoux, E., Mahanta, P. C., Makni, H., Makni, M., Malausa, T., Matura, R., Mckey, D., Mcmillen Jackson, A. L., Méndez, M. A., Mezghani-Khemakhem, M., Michel, A. P., Paul, M., Murielcunha, J., Nibouche, S., Normand, F., Palkovacs, E. P., Pande, V., Parmentier, K., Peccoud, J., Piatscheck, F., Puchulutegui, C., Ramos, R., Ravest, G., Richner, H., Robbens, J., Rochat, D., Rousselet, J., Saladin, V., Sauve, M., Schlei, O., Schultz, T. F., Scobie, A. R., Segovia, N. I., Seyoum, S., Silvain, J.-f., Tabone, E., Van Houdt, J. K. J., Vandamme, S. G., Volckaert, F. A. M., Wenburg, J., Willis, T. V., Won, Y.-J., Ye, N. H., Zhang, W. and Zhang, Y. X.
This article documents the addition of 299 microsatellite marker loci and nine pairs of single-nucleotide polymorphism (SNP) EPIC primers to the Molecular Ecology Resources (MER) Database. Loci were developed for the following species: Alosa pseudoharengus, Alosa aestivalis, Aphis spiraecola, Argopecten purpuratus, Coreoleuciscus splendidus, Garra gotyla, Hippodamia convergens, Linnaea borealis, Menippe mercenaria, Menippe adina, Parus major, Pinus densiflora, Portunus trituberculatus, Procontarinia mangiferae, Rhynchophorus ferrugineus, Schizothorax richardsonii, Scophthalmus rhombus, Tetraponera aethiops, Thaumetopoea pityocampa, Tuta absoluta and Ugni molinae. These loci were cross-tested on the following species: Barilius bendelisis, Chiromantes haematocheir, Eriocheir sinensis, Eucalyptus camaldulensis, Eucalyptus cladocalix, Eucalyptus globulus, Garra litaninsis vishwanath, Garra para lissorhynchus, Guindilla trinervis, Hemigrapsus sanguineus, Luma chequen. Guayaba, Myrceugenia colchagüensis, Myrceugenia correifolia, Myrceugenia exsucca, Parasesarma plicatum, Parus major, Portunus pelagicus, Psidium guayaba, Schizothorax richardsonii, Scophthalmus maximus, Tetraponera latifrons, Thaumetopoea bonjeani, Thaumetopoea ispartensis, Thaumetopoea libanotica, Thaumetopoea pinivora, Thaumetopoea pityocampa ena clade, Thaumetopoea solitaria, Thaumetopoea wilkinsoni and Tor putitora. This article also documents the addition of nine EPIC primer pairs for Euphaea decorata, Euphaea formosa, Euphaea ornata and Euphaea yayeyamana.
Año: 2012
Palabras claves:
Referencia APA: Molecular Ecology Resources Primer Development Consortium, A’hara, S. W., Amouroux, P., Argo, E. E., Avand-Faghih, A., Barat, A., Barbieri, L., Bert, T. M., Blatrix, R., Blin, A., Bouktila, D., Broome, A., Burban, C., Capdevielle-Dulac, C., Casse, N., Chandra, S., Cho, K. J., Cottrell, J. E., Crawford, C. R., Davis, M. C., Delatte, H., Desneux, N., Djieto-lordon, C., Dubois, M. P., El-Mergawy, R. A. A. M., Gallardo-Escárate, C., Garcia, M., Gardiner, M.M., Guillemaud, T., Haye, P. A., Hellemans, B., Hinrichsen, P., Jeon, J. H., Kerdelhué, C., Kharrat, I., Kim, K. H., Kim, Y. Y., Kwan, Y.-S., Labbe, E. M., Lahood, E., Lee, K. M., Lee, W.-O., Lee, Y.-H., Legoff, I., Li, H., Lin, C.-P., Liu, S. S., Liu, Y. G., Long, D., Maes, G. E., Magnoux, E., Mahanta, P. C., Makni, H., Makni, M., Malausa, T., Matura, R., Mckey, D., Mcmillen Jackson, A. L., Méndez, M. A., Mezghani-Khemakhem, M., Michel, A. P., Paul, M., Murielcunha, J., Nibouche, S., Normand, F., Palkovacs, E. P., Pande, V., Parmentier, K., Peccoud, J., Piatscheck, F., Puchulutegui, C., Ramos, R., Ravest, G., Richner, H., Robbens, J., Rochat, D., Rousselet, J., Saladin, V., Sauve, M., Schlei, O., Schultz, T. F., Scobie, A. R., Segovia, N. I., Seyoum, S., Silvain, J.-f., Tabone, E., Van Houdt, J. K. J., Vandamme, S. G., Volckaert, F. A. M., Wenburg, J., Willis, T. V., Won, Y.-J., Ye, N. H., Zhang, W. and Zhang, Y. X. (2012). Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2011–30 September 2011. Molecular Ecology Resources, 12: 185–189.
Plasticity in feeding selectivity and trophic structure of kelp forest associated fishes from northern Chile.
Pérez-Matus, A., Pledger, S., Díaz, F., Ferry, L., & Vásquez, J.
One of the primary ways in which species interact with their environment is through foraging; thereby directly consuming some fraction of their surrounding habitat. The habitat itself, in turn, may dictate the types of foraging opportunities that are available to the inhabitants. To investigate the relationship between habitat availability and diet composition of habitat-associated fishes, we estimated the relative abundance of the potential sessile and mobile prey items and the diet of the fish species assemblage associated to kelp forest. Specifically, diet and feeding selectivity of the kelp-forest associated fish assemblage were determined by calculating Manly's alpha selectivity index. We determined the diet of kelp forest associated fishes and their foraging behavior by comparing prey availability with those items present in the stomachs of fishes captured by gill net and spear gun. We calculated the degree of dietary overlap among fishes from four locations along the northern coast of Chile. Results indicate that utilization of prey by predators is predominantly affected by potential prey availability. With the exception of the two carnivorous species such as Pinguipes chilensis (Valenciennes, 1883) and Paralabrax humeralis (Cuvier & Valenciennes, 1828), whose diet did not change among sites, all other kelp-associated fishes changed their dietary habitats to consistent with the availability of local resources. Benthic resources changed among the different study sites, which led to differing diets even in the same species from different locations. Eleven of the 12 kelp forest fishes also showed some selectively for benthic prey. We conclude that the ability of fishes to be plastic in their feeding preference and, therefore, partition the benthic resources may set adaptations to co-exist in a dynamic environment such as kelp forest.
Año: 2012
Palabras claves: Chile, Manly α, predation, trophic guilds, understory.
Referencia APA: Pérez-Matus, A., Pledger, S., Díaz, F., Ferry, L., & Vásquez, J. (2012). Plasticity in feeding selectivity and trophic structure of kelp forest associated fishes from northern Chile. Rev. Chil. Hist. Nat., 85(1), 29-48.