1 17 18 19 20 21 27

Diversity of Quinoa in a Biogeographical Island: a Review of Constraints and Potential from Arid to Temperate Regions of Chile.

Autores:

Bazile, D., Martínez, E., & Fuentes, F.

Resumen:

Chile, isolated by a hyper-arid desert in the north, the Andes Range to the east and the Pacific and Antarctic waters (west and south), has a highly endemic flora. This hotspot of biodiversity is in danger not only due to increasing desertification, but also because human activities can diminish agrobiodiversity. Quinoa (Chenopodium quinoa Willd.) is an Andean species producing highly nutritious grains, which almost disappeared from Chile during the Spanish colonization. Today less than 300 small-scale and highly isolated farmers still grow it as a rain-fed crop. This review describes the biogeographical-social context of quinoa in Chile, and its high genetic diversity as a product of a long domestication process, resulting in numerous local landraces whose conservation and use for breeding improved varieties is of paramount importance. We suggest the term “lighthouse crop” to emphasize its contribution to small scale ecological and bio diverse agriculture, particularly in stressful environments, to promote a healthier nutrition and more equitable markets in the world. Furthermore this crop and its exceptional nutritional properties were invoked by the United Nations Food and Agriculture Organization (FAO) to promote its use worldwide, and to declare 2013 the International Year of Quinoa.

Año: 2014

Palabras claves: Agrobiodiversity, agroecosystems, Chenopodium quinoa, conservation, cropping systems, lighthouse crop.

Referencia APA: Bazile, D., Martínez, E., & Fuentes, F. (2014). Diversity of Quinoa in a Biogeographical Island: a Review of Constraints and Potential from Arid to Temperate Regions of Chile. Not Bot Hort Agrobot Cluj, 42(2).

Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile.

Autores:

Oyarzún, R., Barrera, F., Salazar, P., Maturana, H., Oyarzún, J., & Aguirre, E. et al.

Resumen:

A study that tests the applicability and consistency of independent but complementary approaches in the assessment of interactions between surface water and shallow groundwater within a water-stressed basin is described. The mostly agricultural Limarí basin in arid north-central Chile was chosen as a suitable case study. The analyses involved: (1) a connectivity index method, (2) hydrochemistry, and (3) water isotopic geochemistry. Chemical and isotopic data were obtained from two sampling campaigns conducted in April (fall) and December (summer) of 2011 in 22 sampling locations, which included surface water and groundwater. The results obtained by each of the methodologies were mutually consistent and indicate high connectivity conditions. Additionally, the relative contribution by different sources was assessed through end-member mixing analysis, and for reaches of the river that showed gaining conditions, the contribution of groundwater inflow to stream discharge was estimated. It is suggested that this multi-method approach is useful for the characterization of surface-water–groundwater interactions, since it at least represents a suitable starting point for obtaining basic information on these relationships. Thus, it may become the base for further studies in arid and semi-arid basins facing water management challenges.

Año: 2014

Palabras claves: Stable isotopes, RadonOver-allocated basin, Arid regions, Chile.

Referencia APA: Oyarzún, R., Barrera, F., Salazar, P., Maturana, H., Oyarzún, J., & Aguirre, E. et al. (2014). Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeol J, 22(8), 1857-1873.

Alimentos, Tecnologías Vegetales Y Paleoambiente En Las Aldeas Formativas De La Pampa Del Tamarugal, Tarapacá (ca. 900 AC-BOO DC).

Autores:

García, M., Vidal, A., Mandakovic, V., Maldonado, A., Peña, M., & Belmonte, E.

Resumen:

Este trabajo pretende introducir a los usos e imaginarios relacionados con las plantas en las aldeas formativas de la Pampa del Tamarugal, Tarapacá (Chile). Se estudiaron los restos vegetales recuperados de las excavaciones de los sitios Pircas y Caserones, en la quebrada de Tarapacá, así como de Guatacondo 1 y Ramaditas, en la de Guatacondo. Estas aldeas poseen contextos domésticos, ceremoniales, mortuorios y de almacenaje, asociados a alimentos silvestres y cultivados, así como un amplio universo artefactual, principalmente en madera, que incluye materias primas, instrumentos y desechos de talla. Se concluye que, si bien las cuatro aldeas comparten aspectos significativos como su orientación agrícola y forestal, las ocupaciones de ambas cuencas expresan situaciones disímiles que permiten cuestionar la noción evolucionista que se ha tenido del período Formativo como una sucesión unilineal de etapas de progreso.

Año: 2014

Palabras claves: Aldeas - Prosopis - alimentos - tecnologías vegetales -período Formativo - Tarapacá.

Referencia APA: García, M., Vidal, A., Mandakovic, V., Maldonado, A., Peña, M., & Belmonte, E. (2014). Alimentos, Tecnologías Vegetales Y Paleoambiente En Las Aldeas Formativas De La Pampa Del Tamarugal, Tarapacá (ca. 900 AC-BOO DC). Estud. Atacam., (47), 33-58.

Surface ocean response to synoptic-scale variability in wind stress and heat fluxes off south-central Chile.

Autores:

Aguirre, C., Garreaud, R., & Rutllant, J.

Resumen:

The effect of the high frequency (synoptic) variability of wind and heat fluxes upon the surface ocean off south-central Chile (west coast of South America) is investigated using a regional ocean model. We focus our analysis in austral summer, when the regional wind experiences significant day-to-day variability superimposed on a mean, upwelling favorable flow. To evaluate the nature and magnitude of these effects, we performed three identical simulations except for the surface forcing: the climatological run, with long-term monthly mean wind-stresses and heat fluxes; the wind-synoptic run, with daily wind stresses and climatological heat fluxes; and the full-synoptic run, with daily wind-stresses and daily fluxes. The mean currents and surface geostrophic EKE fields show no major differences between simulations, and agree well with those observed in this ocean area. Nevertheless, substantially more ageostrophic EKE is found in the simulations which include synoptic variability of wind-stresses, impacting the total surface EKE and diffusivities, particularly south of Punta Lavapie (37° S), where the lack of major currents implies low levels of geostrophic EKE. Summer mean SSTs are similar in all simulations and agree with observations, but SST variability along the coast is larger in the runs including wind-stress synoptic variability, suggesting a rather linear response of the ocean to cycles of southerly wind strengthening and relaxation. We found that coastal SST variability does not change significantly in the first tenths of kilometers from the shore when including daily heat fluxes, highlighting the prominent role of wind-driven upwelling cycles. In contrast, in the offshore region situated beyond the 50 km coastal strip, it is necessary to include synoptic variability in the heat fluxes to account for a realistic SST variability.

Año: 2014

Palabras claves: Atmospheric forcing; Air–sea interaction; Surface currents; Surface temperature; Synoptic variability, Chile.

Referencia APA: Aguirre, C., Garreaud, R., & Rutllant, J. (2014). Surface ocean response to synoptic-scale variability in wind stress and heat fluxes off south-central Chile. Dynamics Of Atmospheres And Oceans, 65, 64-85

Twelve Years of Change in Coastal Upwelling along the Central-Northern Coast of Chile: Spatially Heterogeneous Responses to Climatic Variability.

Autores:

Aravena, G., Broitman, B., & Stenseth, N.

Resumen:

We use time-series analyses to characterize the effects of recent climate variability upon the local physical conditions at 11 study sites along the northern-central coast of Chile (29–34°S). Environmental indices show that the 1° Bakun upwelling index in this coastal region has fluctuated in time, starting from a stable period around the 1980's, peaking during the mid 90s, decreasing during the next ten years and increasing at a steep rate since 2010. Upwelling intensity decreased with increasing latitude, showing also a negative correlation with climate patterns (El Niño3 sea surface temperature-SST anomalies and the Multivariate El Niño Index). We hypothesize that the impacts of climate variability on upwelling events seem to be spatially heterogeneous along the region. Non-sheltered locations and, particularly, sites on prominent headlands show an immediate (lag = 0) and negative correlation between local SST, upwelling events and wind stress. We suggest that near-shore thermal conditions are closely coupled to large-scale forcing of upwelling variability and that this influence is modulated through local topographic factors.

Año: 2014

Palabras claves: Chile (country), Surface temperature, Oceanography, El Niño-Southern Oscillation, Summer, Latitude, Seasons, Ocean temperature.

Referencia APA: Aravena, G., Broitman, B., & Stenseth, N. (2014). Twelve Years of Change in Coastal Upwelling along the Central-Northern Coast of Chile: Spatially Heterogeneous Responses to Climatic Variability. Plos ONE, 9(2), e90276.

Different photoprotective responses under drought conditions of two predominant Chilean swamp forest species.

Autores:

Bascuñán-Godoy, L., Alcaíno, C., Carvajal, D., Sanhueza, C., Montecinos, S., & Maldonado, A.

Resumen:

Myrceugenia exsucca (DC.) O.Berg (Myrtaceae) and Luma chequen (Molina) A. Gray (Myrtaceae) are two predominants species from swamp forests of Chile. These species present differential microhabitat distribution across soil moisture and north-south precipitation gradients, with only L. chequen being commonly found in lower moisture sites. It is hypothesized that L. chequen has greater plasticity than M. exsucca in the attributes involved in photoprotection under drought conditions. To test this hypothesis: both species were exposed to short term drought treatment. A group of individuals was maintained irrigated (with of -0.58 and -0.73 MPa for M. exsucca and L. chequen, respectively), while another group was exposed to drought treatment with around -1.4 MPa ( D). High relationship was founded between relative water content (RWC) and water potential () forM. exsucca (r2= 0.74) more than for L. chequen (r2= 0.46), indicating thatM. exsucca experienced larger dehydration during the drought treatment. As functional attributes of photosynthetic apparatus, amount of total chlorophyll and chlorophyll a fluorescence parameter levels were studied in both species. The results show that L. chequen reduced total content of chlorophylls and maximum efficiency of PSII (Fv / Fm) related to decrease of energy capture increasing significantly the thermal dissipation (qN). On the other hand, M. exsucca does not change these parameters, but significantly reduced the level of photochemical processes (qL), indicating an energy imbalance. The results indicate M. exsucca has less plasticity than L. chequen under drought conditions. It is believed that these differences may be crucial in the establishment period and may be influencing the limited distribution ofM. exsucca in sites with lower water availability.

Año: 2013

Palabras claves: Thermal dissipation, water potential, native plants, Myrtaceae family, wetland plants.

Referencia APA: Bascuñán-Godoy, L., Alcaíno, C., Carvajal, D., Sanhueza, C., Montecinos, S., & Maldonado, A. (2013). Different photoprotective responses under drought conditions of two predominant Chilean swamp forest species. Gayana Bot., 70(2), 267-274.

Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile.

Autores:

MacDonell, S., Kinnard, C., Mölg, T., Nicholson, L., & Abermann, J.

Resumen:

Meteorological and surface change measurements collected during a 2.5 yr period are used to calculate surface mass and energy balances at 5324 m a.s.l. on Guanaco Glacier, a cold-based glacier in the semi-arid Andes of Chile. Meteorological conditions are marked by extremely low vapour pressures (annual mean of 1.1 hPa), strong winds (annual mean of 10 m s−1), shortwave radiation receipt persistently close to the theoretical site maximum during cloud-free days (mean annual 295 W m−2; summer hourly maximum 1354 W m−2) and low precipitation rates (mean annual 45 mm w.e.). Snowfall occurs sporadically throughout the year and is related to frontal events in the winter and convective storms during the summer months. Net shortwave radiation provides the greatest source of energy to the glacier surface, and net longwave radiation dominates energy losses. The turbulent latent heat flux is always negative, which means that the surface is always losing mass via sublimation, which is the main form of ablation at the site. Sublimation rates are most strongly correlated with net shortwave radiation, incoming shortwave radiation, albedo and vapour pressure. Low glacier surface temperatures restrict melting for much of the period, however episodic melting occurs during the austral summer, when warm, humid, calm and high pressure conditions restrict sublimation and make more energy available for melting. Low accumulation (131 mm w.e. over the period) and relatively high ablation (1435 mm w.e.) means that mass change over the period was negative (−1304 mm w.e.), which continued the negative trend recorded in the region over the last few decades.

Año: 2013

Palabras claves:

Referencia APA: MacDonell, S., Kinnard, C., Mölg, T., Nicholson, L., & Abermann, J. (2013). Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile. The Cryosphere, 7(5), 1513-1526. http://dx.doi.org/10.5194/tc-7-1513-2013

Major hydrological regime change along the semiarid western coast of South America — Response to comments by Maldonado and Moreiras [page number in this issue].

Autores:

Ortega, C., Vargas, G., & Rutllant, J.

Resumen:

Based on the sedimentology, geomorphology and geochronology of eolian and alluvial deposits at Quebrada Santa Julia (QSJ, 31°50′S) site, in a small coastal watershed in the semiarid central Chile, Ortega et al. (2012) interpreted a regional arid climate setting concomitantly with high local humidity due to reinforced coastal fog development between 13,000 and 8600 cal yr BP. Together with other continental proxies and paleo-SST records off central Chile, Ortega et al. (2012) proposed La Niña-like conditions during the latest Pleistocene‒early Holocene along this semiarid coast. A major hydrologic regime shift shortly after 8600 cal yr BP resulted in higher frequency of torrential rainfall episodes still under an arid climate setting, before the onset of El Niño at ~ 5500 cal yr BP (e.g., Rodbell et al., 1999). This hypothesis differs from that of Maldonado and Moreiras (2013) based on pollen records, who suggest humid conditions associated with precipitation around 13,000 and 10,500 cal yr BP (e.g., Maldonado et al., 2010).

Año: 2013

Palabras claves: Early Holocene; Coastal fog; Rainfall; Hydrologic change; Lifting condensation level; Sea level.

Referencia APA: Ortega, C., Vargas, G., & Rutllant, J. (2013). Major hydrological regime change along the semiarid western coast of South America — Response to comments by Maldonado and Moreiras [page number in this issue]. Quaternary Research, 80(1), 140-142.

Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America.

Autores:

Molina-Montenegro, M., Palma-Rojas, C., Alcayaga-Olivares, Y., Oses, R., Corcuera, L., Cavieres, L., & Gianoli, E.

Resumen:

Plasticity and local adaptation have been suggested as two main mechanisms that alien species use to successfully tolerate and invade broad geographic areas. In the present study, we try answer the question if the mechanism for the broad distributional range of T. officinale is for phenotypic plasticity, ecotypic adaptation or both. For this, we used individuals of T. officinale originated from seeds collected in five localities along its latitudinal distribution range in the southern-hemisphere. Seedlings were acclimated at 5 and 25°C for one month. After the acclimation period we evaluated ecophysiological and cytogenetic traits. Additionally, we assessed the fitness at each temperature by recording the seed output of individuals from different localities. Finally, we performed a manipulative experiment in order to assess the tolerance to herbivory and competitive ability between T. officinale from all origins and Hypochaeris scorzonerae a co-occurring native species. Overall, individuals of T. officinale showed high plasticity and ecotypic adaptation for all traits assessed in this study. Changes both in physiology and morphology observed in T. officinale from different origins were mostly correlated, enhancing their ecophysiological performance in temperatures similar to those of their origin. Additionally, all localities showed the same chromosome number and ploidy level. On the other hand, all individuals showed an increase the seed output at 25°C, but those from northern localities increased more. T. officinale from all origins was not significantly affected by herbivory while native showed a negative effect. On the other hand, T. officinale exerted a strong negative effect on the native species, but this former not effected significantly to the invasive T. officinale. High plasticity and local adaptation in all ecophysiological traits, seed-set and the low cytogenetic variability in T. officinale suggests that both strategies are present in this invasive plant species and are not mutually exclusive. Finally, higher tolerance to herbivory and competitive ability suggests that T. officinale could perform successfully in environments with different climatic conditions, and thus colonize and invade South-America.

Año: 2013

Palabras claves:

Referencia APA: Molina-Montenegro, M., Palma-Rojas, C., Alcayaga-Olivares, Y., Oses, R., Corcuera, L., Cavieres, L., & Gianoli, E. (2013). Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America. Ecography, 36(6), 718-730.

Is Physiological Performance a Good Predictor for Fitness? Insights from an Invasive Plant Species.

Autores:

Molina-Montenegro, M., Salgado-Luarte, C., Oses, R., & Torres-Dí­az, C.

Resumen:

Is physiological performance a suitable proxy of fitness in plants? Although, several studies have been conducted to measure some fitness-related traits and physiological performance, direct assessments are seldom found in the literature. Here, we assessed the physiology-fitness relationship using second-generation individuals of the invasive plant species Taraxacum officinale from 17 localities distributed in five continents. Specifically, we tested if i) the maximum quantum yield is a good predictor for seed-output ii) whether this physiology-fitness relationship can be modified by environmental heterogeneity, and iii) if this relationship has an adaptive consequence for T. officinale individuals from different localities. Overall, we found a significant positive relationship between the maximum quantum yield and fitness for all localities evaluated, but this relationship decreased in T. officinale individuals from localities with greater environmental heterogeneity. Finally, we found that those individuals from localities where environmental conditions are highly seasonal performed better under heterogeneous environmental conditions. Contrarily, under homogeneous controlled conditions, those individuals from localities with low environmental seasonality performed much better. In conclusion, our results suggest that the maximum quantum yield seem to be good predictors for plant fitness. We suggest that rapid measurements, such as those obtained from the maximum quantum yield, could provide a straightforward proxy of individual’s fitness in changing environments.

Año: 2013

Palabras claves: Plant physiology, Photosynthesis, Seeds, Physiological adaptation, Chlorophyll, Rain, Invasive species, Ecophysiology.

Referencia APA: Molina-Montenegro, M., Salgado-Luarte, C., Oses, R., & Torres-Dí­az, C. (2013). Is Physiological Performance a Good Predictor for Fitness? Insights from an Invasive Plant Species. Plos ONE, 8(10), e76432. http://dx.doi.org/10.1371/journal.pone.0076432

Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar.

Autores:

Monnier, S. & Kinnard, C.

Resumen:

This study uses boreholes, ground temperature monitoring and ground-penetrating radar (GPR) in order to understand the internal structure and composition of a rock glacier in the upper Choapa valley, northern Chile. The rock glacier is a small valley-side feature, 200 m long and ranging between 3710 and 3780 m a.s.l. Two boreholes were drilled down to depths of 20 and 25 m, respectively, using the diamond drillhole technique. An ice–rock mixture was encountered in the boreholes, with heterogeneous ice content averaging 15–30%. Data from common-midpoint (CMP) and constant-offset (CO) GPR surveys acquired, respectively, near the boreholes and across the whole rock glacier were processed to highlight the internal stratigraphy and variations in the radar-wave velocity. The GPR profiles depict a rock glacier constituted of stacked and generally concordant layers, with a thickness ranging from 10 m in its upper part to ∼30 m towards its terminus. The CMP analysis highlights radar-wave velocities of 0.13–0.16 m ns–1 in the first 20 m of the structure. Larger vertical and lateral velocity variations are highlighted from CO data, reflecting the heterogeneous composition of the rock glacier and the likely presence of unfrozen water in the structure. Given the average air temperature registered at the site (+0.5°C), the near-melting-point temperature registered in the boreholes over more than a year and the presence of locally high water content inferred from GPR data, it is thought that the permafrost in the rock glacier is currently degrading.

Año: 2013

Palabras claves:

Referencia APA: Monnier, S. & Kinnard, C. (2013). Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar. Annals Of Glaciology, 54(64), 61-72.

Zoning of the Mejillones Peninsula marine protected coastal area of multiple uses, northern Chile.

Autores:

Ulloa, R., Vargas, A., Hudson, C., & Rivadeneira, M.

Resumen:

Marine protected areas of multiple uses (MPA-MU), are an important management tool to protect biodiversity and regulate the use of coastal marine resources. However, robust conservation plans require an explicit consideration of not only biological but also social components, balancing the protection of biodiversity with a sustainable exploitation of marine resources. Here we applied the decision-making algorithm MARXAN to provide a zoning analysis at the Mejillones Peninsula MPA-MU in northern Chile, one of largest MPA's of the Humboldt Current Marine Ecosystem. We set conservation goals for coarse and fine-filter conservation targets that were crossed out against different threats and pressure factors from human activities across the area. We identified a portfolio of sites for conservation, within the Mejillones Peninsula MPA-MU, representing different ecological systems with different levels of human impacts and vulnerability. These results may serve as a foundational guideline for the future administration of the MPA-MU.

Año: 2013

Palabras claves: MPA-MU, MARXAN, conservation plans, marine coastal ecosystems, northern Chile.

Referencia APA: Ulloa, R., Vargas, A., Hudson, C., & Rivadeneira, M. (2013). Zoning of the Mejillones Peninsula marine protected coastal area of multiple uses, northern Chile. Lat. Am. J. Aquat. Res. vol.41 no.3 Valparaíso jul.